

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA

DENOMINACIÓN DE LA ASIGNATURA:						
Amplificación de Señales						
IDENTIFICACIÓN DE LA ASIGNATURA						
MODALIDAD: Curso						
TIPO DE ASIGNATURA: Teórico – Práctica						
SEMESTRE EN QUE SE IMPARTE: Sexto						
CARÁCTER DE LA ASIGNATURA: Obligatoria						
NÚMERO DE CRÉDITOS: 10						
HORAS DE CLASE A LA 6 SEMANA:	Teóricas: 4	Prácticas: 2	Semanas de clase:	TOTAL DE 96 HORAS:		
SERIACIÓN OBLIGATORIA ANTECEDENTE: Dispositivos y Circuitos Electrónicos						
SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna						

OBJETIVO GENERAL

Al finalizar el curso el alumno será capaz de analizar y diseñar amplificadores multietapas de señal pequeña y amplificadores de potencia de diversas configuraciones, empleando transistores bipolares de juntura (TBJ), transistores de efecto de campo (FET) y amplificadores integrados y además comprenderá las diferentes herramientas de análisis empleadas en su diseño.

	ÍNDICE TEMÁTICO					
UNIDAD	TEMAS	Horas Teóricas	Horas Prácticas			
1	Amplificadores multietapas de señal pequeña	8	4			
2	Amplificadores en configuraciones compuestas	12	6			
3	Amplificadores con realimentación	12	4			
4	Respuesta en frecuencia	10	4			
5	Amplificadores de potencia	12	8			
6	Amplificadores Integrados	10	6			
	Total de Horas	64	32			
	Suma Total de las Horas	Ś	96			

CONTENIDO TEMÁTICO

1. AMPLIFICADORES MULTIETAPAS DE SEÑAL PEQUEÑA

- 1.1. Necesidad de amplificadores multietapas.
- 1.2. Métodos de acoplamiento.
 - 1.2.1. Acoplamiento por transformador.
 - 1.2.2. Acoplamiento capacitivo.
 - 1.2.3. Acoplamiento directo.
- 1.3. Amplificadores en cascada con TBJ.
- 1.4. Amplificadores en cascada con transistores FET.
- Simulación de amplificadores multietapas empleando herramientas computacionales.

2. AMPLIFICADORES EN CONFIGURACIONES COMPUESTAS

- 2.1. Amplificador Cascodo.
- 2.2. Espejo de Corriente.
- 2.3. Amplificador Darlington.
- 2.4. Amplificador Diferencial.
 - 2.4.1. Ganancia a modo común y modo diferencial.
 - 2.4.2. Relación de rechazo a modo común.
 - 2.4.3. Con fuente de corriente.
 - 2.4.4. Resistencias activas.
 - 2.4.5. Espejo de corriente.
 - 2.4.6. Corrientes de desajuste.
 - 2.4.7. Par diferencial.
 - 2.4.8. Amplificador diferencial Darlington.
- 2.5. Amplificadores diferenciales empleando diferentes tipos de transistores.
- 2.6. Aplicaciones.
 - 2.6.1. Desviador de nivel.
 - 2.6.2. Diseño de un amplificador analógico.
- 2.7. Simulación de amplificadores en configuraciones compuestas empleando herramientas computacionales.

3. AMPLIFICADORES CON REALIMENTACIÓN

- 3.1. Conceptos básicos de realimentación.
- 3.2. Propiedades de la realimentación negativa.
- 3.3. Topologías básicas de realimentación.
 - 3.3.1. Paralelo paralelo.
 - 3.3.2. Serie paralelo.
 - 3.3.3. Paralelo serie.
 - 3.3.4. Serie serie.
- 3.4. Amplificadores de realimentación.
- 3.5. Ganancia de lazo abierto y ganancia de lazo cerrado.
- 3.6. Problemas de estabilidad en amplificadores realimentados.
- 3.7. Efectos de la realimentación en los polos de un amplificador.

3.8. Simulación de amplificadores con realimentación empleando herramientas computacionales.

4. RESPUESTA EN FRECUENCIA

- 4.1. Introducción y conceptos básicos.
- 4.2. Análisis en el dominio de Laplace de amplificadores.
- 4.3. Respuesta a baja frecuencia de amplificadores con transistores TBJ.
 - 4.3.1. Efectos del capacitor de desvío.
 - 4.3.2. Diagramas de Bode.
 - 4.3.3. Efectos de los capacitores de acoplo.
 - 4.3.4. Efectos combinados de los capacitores de acoplo y de desvío.
 - 4.3.5. Consideraciones de los capacitores y la frecuencia.
- 4.4. Respuesta a baja frecuencia de amplificadores con transistores FET.
- 4.5. Respuesta a alta frecuencia de amplificadores con transistores TBJ.
 - 4.5.1. Teorema de Millar.
 - 4.5.2. Efecto de los capacitores internos de un transistor.
 - 4.5.3. Frecuencia de transición.
- 4.6. Respuesta a alta frecuencia de amplificadores con transistores FET.
- 4.7. Efectos de la frecuencia en amplificadores multietapas.
- 4.8. Respuesta en frecuencia del amplificador diferencial.
- 4.9. Simulación de respuesta en frecuencia de amplificadores empleando herramientas computacionales.

5. AMPLIFICADORES DE POTENCIA

- 5.1. Clasificación de amplificadores de potencia.
- 5.2. Amplificador clase A.
 - 5.2.1. Acoplo directo.
 - 5.2.2. Acoplo con transformador.
- 5.3. Amplificador clase B.
 - 5.3.1. Push-Pull.
 - 5.3.2. Distorsión de cruce.
- 5.4. Amplificador clase AB.
 - 5.4.1. Simetría complementaria.
 - 5.4.2. Polarización con diodos.
 - 5.4.3. Polarización con multiplicador V_{BE.}
 - 5.4.4. En configuración Darlington.
 - 5.4.5. En casi complementaria.
 - 5.4.6. Simetría complementaria con una fuente de alimentación.
- 5.5. Sistemas de excitación.
- 5.6. El circuito Bootstrap.
- 5.7. Red de Zobel.
- 5.8. Realimentación Negativa.
- 5.9. Amplificadores clase C y D.
- 5.10. Etapas de potencia con transistores FET.
- 5.11. Distorsión en amplificadores de potencia.
- 5.12. Disipación de calor del transistor de potencia.
- 5.13. Análisis de hojas de especificaciones de transistores de potencia.

- 5.14. Diseño de un amplificador de potencia.
- 5.15. Simulación de amplificadores de potencia empleando herramientas computacionales.

6. AMPLIFICADORES DE POTENCIA DE CIRCUITO INTEGRADO

- 6.1. Amplificador de potencia de circuito integrado.
- 6.2. Módulos de potencia con transistores Darlington.
- 6.3. Amplificadores integrados de potencia con transistores FET.
- 6.4. Configuraciones y especificaciones.

PRÁCTICAS DE LABORATORIO

- 1. El amplificador básico.
- 2. El amplificador multietapas.
- 3. El amplificador Darlington.
- 4. El amplificador cascodo.
- 5. El amplificador diferencial.
- 6. Realimentación serie serie.
- 7. Realimentación paralelo serie.
- 8. Respuesta en frecuencia.
- 9. El amplificador de potencia clase "A", acoplo con transformador.
- 10. El amplificador de potencia clase "AB", simetría complementaria.
- 11. Amplificadores de potencia con transistores FET.
- 12. Amplificadores integrados.

BIBLIOGRAFÍA

BIBLIOGRAFÍA BÁSICA

- Boylestad, Robert, Electrónica Teoría de Circuitos y Dispositivos Electrónicos, Editorial Pearson, 8ª Edición, México, 2003.
- Floyd, Thomas L., *Dispositivos Electrónicos*, Editorial Pearson, 8ª Edición, México, 2008.
- Albert Malvino, Davis Bates, Principios de Electrónica, Editorial Mc. Graw Hill, 7^a Edición, México, 2007.
- Maloney, Thimothy J., Modern Industrial Electronics, 5^a Edición, Editorial Pearson, EUA, 2003.
- Rashid, Muhammad H., Circuitos Microelectrónicos, análisis y diseño, Editorial Thomson, México, 2002.

BIBLIOGRAFÍA COMPLEMENTARIA

- Pleite, Guerra Jorge, *Electrónica Analógica para Ingenieros*, Mc Graw Hill, España, 2009.
- Self, Douglas, Amplificadores de Potencia Manual de Diseño, CEAC, España, 2001.
- Roden, Martin S., Diseño Electrónico: Circuitos y Sistemas, Editorial Alhambra Mexicana S.A., México, 2000.

SITIOS WEB RECOMENDADOS

- http://www.dgbiblio.unam.mx (librunam, tesiunam, bases de datos digitales)
- http://www.copernic.com

SUGERENCIAS DIDÁCTICAS RECOMENDADAS PARA IMPARTIR LA ASIGNATURA

SUGERENCIAS DIDÁCTICAS	A UTILIZAR
Exposición oral	X
Exposición audiovisual	X
Ejercicios dentro de clase	X
Ejercicios fuera del aula	X
Lecturas obligatorias	X
Trabajo de investigación	X
Prácticas de laboratorio	X
Prácticas de campo	
Otras	

MECANISMOS DE EVALUACIÓN

ELEMENTOS UTILIZADOS PARA EVALUAR EL PROCESO ENSEÑANZA-APRENDIZAJE	A UTILIZAR
Exámenes parciales	X
Examen final	X
Trabajos y tareas fuera del aula	X
Participación en clase	X
Asistencia	
Exposición de seminarios por los alumnos	

PERFIL PROFESIOGRAFICO REQUERIDO PARA IMPARTIR LA ASIGNATURA						
LICENCIATURA	POSGRADO	ÁREA INDISPENSABLE	ÁREA DESEABLE			
Ingeniería Mecánica	en	Electrónica				
Eléctrica o, Ingeniería en	Electrónica					
Electrónica y						
Comunicaciones						