UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA

PROGRAMA DE ESTUDIO

	ELECTRICIDAD Y MAGNETISMO Asignatura		4°	11
			lave Semestre	Créditos
	Ciencias Básicas	Física General y Química	Ingeniería In	ndustrial
	División	Departamento	Carrera(s) en que	e se imparte
	Asignatura:	Horas:	Total (horas):	
	Obligatoria X	Teóricas 4.5	Semana 6.	5
	Optativa	Prácticas 2.0	16 Semanas 104	4.0

Modalidad: Curso, laboratorio

Seriación obligatoria antecedente: ninguna

Seriación obligatoria consecuente: Electrónica básica

Objetivo(s) del curso:

El alumno analizará los conceptos, principios y leyes fundamentales del electromagnetismo y desarrollará su capacidad de observación y su habilidad en el manejo de instrumentos experimentales, con el fin de que pueda aplicar esta formación en la resolución de problemas relacionados, en asignaturas consecuentes y en la práctica profesional.

Temario

Núm.	Nombre	HORAS
1.	Campo y potencial eléctricos	15.0
2.	Capacitancia y dieléctricos	8.0
3.	Circuitos eléctricos	15.0
4.	Magnetostática	16.0
5.	Inducción electromagnética	12.0
6.	Propiedades magnéticas de la materia	6.0
		72.0
	Prácticas de laboratorio	32.0
	Total	104.0

ELECTRICIDAD Y MAGNETISMO

1 Campo y potencial eléctricos

Objetivo: El alumno determinará campo eléctrico, diferencia de potencial y trabajo casiestático en arreglos de cuerpos geométricos con carga eléctrica uniformemente distribuida.

Contenido:

- 1.1 Concepto de carga eléctrica y distribuciones continuas de carga (lineal, superficial y volumétrica).
- 1.2 Ley de Coulomb. Principio de superposición.
- 1.3 Concepto de campo eléctrico.
- 1.4 Obtención de campos eléctricos originados por distribuciones discretas y continuas de carga (carga puntual, segmento de línea, superficie infinita, línea infinita).
- **1.5** Concepto y definición de flujo eléctrico.
- **1.6** Ley de Gauss en forma integral y sus aplicaciones.
- 1.7 El campo electrostático y el concepto de campo conservativo.
- **1.8** Definición de potencial eléctrico.
- 1.9 Cálculo de diferencias de potencial (carga puntual, segmento de línea, superficie infinita, placas planas y paralelas).
- 1.10 El gradiente de potencial eléctrico.

2 Capacitancia y dieléctricos

Objetivo: El alumno calculará la capacitancia de un sistema y la energía potencial eléctrica en él almacenada

Contenido:

- 2.1 Concepto de capacitor y definición de capacitancia.
- 2.2 Cálculo de capacitancias (capacitor de placas planas y paralelas).
- 2.3 Cálculo de la energía almacenada.
- 2.4 Conexiones de capacitores; capacitor equivalente.
- 2.5 Polarización de la materia.
- 2.6 Concepto de rigidez dieléctrica.
- 2.7 Susceptibilidad, permitividad y permitividad relativa. Campo vectorial de desplazamiento eléctrico.
- **2.8** Discusión de los efectos del uso de dieléctricos en los capacitores.

3 Circuitos eléctricos

Objetivo: El alumno analizará el comportamiento de circuitos eléctricos resistivos, en particular, calculará las transformaciones de energías asociadas y obtendrá el modelo matemático que relaciona las variables involucradas.

Contenido:

3.1 Conceptos y definiciones de: corriente eléctrica, velocidad media de los portadores de carga libre y densidad de corriente eléctrica.

ELECTRICIDAD Y MAGNETISMO

- 3.2 Obtención experimental de la Ley de Ohm; registro y tabulación de las variables: diferencia de potencial y corriente eléctrica. Obtención de la ecuación de una línea recta que represente los valores experimentales. Significado físico de la pendiente de la recta obtenida. Conductividad y resistividad.
- 3.3 Ley de Joule.
- 3.4 Conexiones de resistores; resistor equivalente.
- 3.5 Concepto y definición de fuerza electromotriz. Fuentes de fuerza electromotriz: ideales y reales.
- 3.6 Nomenclatura básica empleada en circuitos eléctricos.
- 3.7 Leyes de Kirchhoff y su aplicación en circuitos resistivos con fuentes de voltaje continuo.
- 3.8 Circuito RC.

4 Magnetostática

Objetivo: El alumno determinará el campo magnético debido a distribuciones de corriente eléctrica, calculará la fuerza magnética sobre conductores portadores de corriente, obtendrá experimentalmente el modelo matemático que relaciona las variables físicas anteriores y comprenderá el principio de operación del motor de corriente directa.

Contenido:

- **4.1** Descripción de los imanes y experimento de Oersted.
- **4.2** Fuerza magnética entre cargas en movimiento.
- **4.3** Obtención de la expresión de Lorentz para determinar la fuerza electromagnética.
- **4.4** Definición de campo magnético (B). Principio de superposición.
- 4.5 Ley de Biot-Savart y sus aplicaciones. Cálculo del campo magnético (segmento de conductor recto, espira en forma de circunferencia, espira cuadrada, bobina, solenoide).
- **4.6** Concepto v definición de fluio magnético.
- **4.7** Ley de Gauss en forma integral para el magnetismo.
- 4.8 Circulación del campo magnético; ley de Ampere y sus aplicaciones. Cálculo del campo magnético (conductor recto y largo, solenoide largo).
- 4.9 Fuerza magnética entre conductores. Registro y tabulación de las variables: fuerza de origen magnético y corriente eléctrica que circula por un conductor recto. Ecuación de una línea recta que represente los valores experimentales. Significado físico de la pendiente de la recta obtenida.
- 4.10 Principio de operación del motor de corriente directa.

5 Inducción electromagnética

Objetivo: El alumno determinará las inductancias de circuitos eléctricos y la energía magnética almacenada en ellos. Comprenderá el principio de operación del transformador eléctrico monofásico.

Contenido:

- **5.1** Ley de Faraday y principio de Lenz.
- **5.2** Fuerza electromotriz de movimiento.
- **5.3** Principio de operación del generador eléctrico.
- **5.4** Conceptos de inductancia propia y mutua y de inductor.

ELECTRICIDAD Y MAGNETISMO

(4/5)

- 5.5 Cálculo de inductancias (inductancia propia de un solenoide, inductancia mutua entre dos solenoides coaxiales).
- **5.6** Principio de operación del transformador eléctrico.
- **5.7** Conexión de inductores en serie; inductor equivalente.
- **5.8** Energía en un inductor.
- **5.9** Circuitos RL y RLC en serie.

6 Propiedades magnéticas de la materia

Objetivo: El alumno describirá las características magnéticas de los materiales.

Contenido:

- **6.1** Diamagnetismo, paramagnetismo y ferromagnetismo.
- **6.2** Susceptibilidad, permeabilidad y permeabilidad relativa.
- **6.3** Definición de los vectores intensidad de campo magnético (H) y magnetización (M) y su relación con el campo magnético (B).
- **6.4** Discusión de los efectos del uso de materiales en los inductores.

Bibliografía básica:

Temas para los que se recomienda:

JARAMILLO M., Gabriel A. y ALVARADO C., Alfonso A.

Todos

Electricidad v Magnetismo

1a. Preedición

México

Facultad de Ingeniería, UNAM, Trillas, 2001

SERWAY, Raymond A.

Todos

Física

5a. Edición

México

McGraw-Hill, 2002

Tomo II

Bibliografía complementaria:

RESNICK, Robert, HALLIDAY, David, y KRANE, Kenneth

Todos

Física volumen 2

5a. Edición

México

CECSA, 2004

ELECTRICIDAD Y MAGNETISMO	(5/5)
TIPLER, Paul A. Física para la ciencia y la tecnología. 4a Edición Barcelona Editorial Reverté, S.A., 2001 Vol. II	Todos
LEA, Susan M., BURKE, John Robert Física: La naturaleza de las cosas Vol. II. México International Thomson Editores, 1999	Todos
POPOVIC, Zoya y POPOVIC, Branko. Introducción al electromagnetismo 1a Edición México Grupo Patria Cultural, 2004	Todos
BENSON, Harris. Física Universitaria Vol. II. la Edición México Grupo Patria Cultural, 2004	Todos
Sugerencias didácticas:	
Exposición oral Exposición audiovisual Ejercicios dentro de clase Ejercicios fuera del aula Seminarios Otras: Empleo de tecnología de punta	Lecturas obligatorias Trabajos de investigación Prácticas de taller o laboratorio Prácticas de campo Otras: Uso de paquetes de cómputo X
Forma de evaluar:	
Exámenes parciales Exámenes finales Trabajos y tareas fuera del aula X X	Participación en clase Asistencias a prácticas Otras: Participación en prácticas X
Perfil profesiográfico de quienes pueden impartir la	a asignatura
con estudios de posgrado o el equivalente de experien	nya carga académica en el área sea similar a éstas. Deseable cia profesional en el área de su especialidad y recomendable gramas de formación docente de la Facultad en la disciplina y