## Universidad Nacional Autónoma de México Facultad de Ingeniería

# PROGRAMA DE ESTUDIO

| ESTRUCTURAS DISCRETAS Asignatura             |                                | ETAS                                                                                                                                | 1552<br>Clave                                                                                                             | 5° Semestr |                           | editos                                        |        |
|----------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------|---------------------------|-----------------------------------------------|--------|
|                                              |                                | Asignatura                                                                                                                          |                                                                                                                           | Clave      | Semesu                    | ie Ci                                         | euitos |
| I                                            | Ingeniería Eléctrica  División |                                                                                                                                     | Ingeniería en Comput Departamento                                                                                         | ación      |                           | Ingeniería en Computación                     |        |
|                                              | DIV                            | •                                                                                                                                   |                                                                                                                           |            | Carrera en que se imparte |                                               | .e     |
|                                              | Asign                          | atura:                                                                                                                              | Horas:                                                                                                                    |            | Total (horas)             | ) <b>:</b>                                    |        |
|                                              | Obliga                         | atoria X                                                                                                                            | Teóricas 4.5                                                                                                              |            | Semana                    | 4.5                                           |        |
|                                              | Optati                         | va                                                                                                                                  | Prácticas 0.0                                                                                                             |            | 16 Semanas                | 72.0                                          |        |
| odalidad                                     | l: Curso                       |                                                                                                                                     |                                                                                                                           |            |                           |                                               |        |
| ignatura                                     | ı obliga                       | toria antecedente:                                                                                                                  | Algoritmos y Estructuras o                                                                                                | le Datos   |                           |                                               |        |
| C                                            | Ü                              |                                                                                                                                     | ·                                                                                                                         |            |                           |                                               |        |
|                                              |                                |                                                                                                                                     |                                                                                                                           |            |                           |                                               |        |
| ignatura                                     | a obliga                       | toria consecuente:                                                                                                                  | Ninguna.                                                                                                                  |            |                           |                                               |        |
| b <b>jetivo(s)</b><br>alumno o               | ) del cui                      | rso:<br>nderá los conceptos                                                                                                         | matemáticos de la compu                                                                                                   |            | a solución de p           | roblemas relac                                | cionad |
| <b>bjetivo(s)</b><br>alumno o                | ) del cui                      | rso:<br>nderá los conceptos                                                                                                         | · ·                                                                                                                       |            | a solución de p           | roblemas relac                                | cionad |
| b <b>jetivo(s)</b><br>alumno o<br>n el proce | del cur<br>compresesamien      | rso:<br>nderá los conceptos<br>to de la información                                                                                 | matemáticos de la compu                                                                                                   |            | a solución de p           |                                               | cionad |
| <b>ojetivo(s)</b><br>alumno o<br>n el proce  | ) del cui                      | rso: nderá los conceptos to de la información  Nombre                                                                               | matemáticos de la compu                                                                                                   | as.        | a solución de p           | roblemas relac<br>Horas<br>16.0               | cionad |
| ojetivo(s)<br>alumno on el proce             | ) del cur<br>compre<br>esamien | rso: nderá los conceptos to de la información  Nombre  Lógica proposicion                                                           | matemáticos de la comput<br>y el diseño de computador                                                                     | as.        | a solución de p           | HORAS                                         | cionad |
| ojetivo(s)<br>alumno on el proce             | Núm.  1.                       | rso: nderá los conceptos to de la información  Nombre Lógica proposicion Conjuntos, relacion                                        | matemáticos de la comput<br>y el diseño de computador<br>nal y cálculo de predicados<br>nes y pruebas matemáticas.        | as.        | a solución de p           | Horas<br>16.0<br>12.0                         | cionad |
| <b>ojetivo(s)</b><br>alumno o<br>n el proce  | Núm.  1.  2.  3.               | rso: nderá los conceptos to de la información  Nombre Lógica proposicion Conjuntos, relacion Sistemas algebraic                     | matemáticos de la comput<br>y el diseño de computador<br>nal y cálculo de predicados<br>nes y pruebas matemáticas.        | as.        | a solución de p           | Horas<br>16.0<br>12.0<br>16.0                 | cionad |
| <b>ojetivo(s)</b><br>alumno o<br>n el proce  | Núm. 1. 2. 3.                  | rso: nderá los conceptos to de la información  Nombre Lógica proposicion Conjuntos, relacion Sistemas algebraic Teoría de gráficas. | matemáticos de la comput<br>y el diseño de computador<br>nal y cálculo de predicados<br>nes y pruebas matemáticas.        | as.        | a solución de p           | Horas<br>16.0<br>12.0<br>16.0<br>16.0         | cionad |
| ojetivo(s)<br>alumno o<br>n el proce         | Núm.  1.  2.  3.               | rso: nderá los conceptos to de la información  Nombre Lógica proposicion Conjuntos, relacion Sistemas algebraic                     | matemáticos de la comput<br>y el diseño de computador<br>nal y cálculo de predicados<br>nes y pruebas matemáticas.        | as.        | a solución de p           | HORAS<br>16.0<br>12.0<br>16.0<br>16.0<br>12.0 | cionad |
| ojetivo(s)<br>alumno o<br>n el proce         | Núm. 1. 2. 3.                  | rso: nderá los conceptos to de la información  Nombre Lógica proposicion Conjuntos, relacion Sistemas algebraic Teoría de gráficas. | matemáticos de la comput<br>y el diseño de computador<br>nal y cálculo de predicados<br>nes y pruebas matemáticas.        | as.        | a solución de p           | Horas<br>16.0<br>12.0<br>16.0<br>16.0         | cionad |
| b <b>jetivo(s)</b><br>alumno o<br>n el proce | Núm. 1. 2. 3.                  | rso: nderá los conceptos to de la información  Nombre Lógica proposicion Conjuntos, relacion Sistemas algebraic Teoría de gráficas. | matemáticos de la comput<br>y el diseño de computador<br>nal y cálculo de predicados<br>nes y pruebas matemáticas.<br>os. | as.        | a solución de p           | HORAS<br>16.0<br>12.0<br>16.0<br>16.0<br>12.0 | cionad |

ESTRUCTURAS DISCRETAS (2/6)



### 1 Lógica proposicional y cálculo de predicados

**Objetivo:** El alumno dominará la teoría de la lógica matemática y la aplicará en la solución de problemas dentro del campo de la computación.

#### **Contenido:**

- **1.1** Fórmulas proposicionales y tablas de verdad.
  - **1.1.1** Conceptos.
  - **1.1.2** Tablas de verdad.
- **1.2** Formas normales y dispositivos de dos estados.
  - **1.2.1** Forma normal disyuntiva principal.
  - **1.2.2** Forma normal conjuntiva principal.
- **1.3** Notación polaca y parentizada.
  - 1.3.1 Notación.
  - **1.3.2** Transformación de notaciones.
- **1.4** Elementos de inferencia para el cálculo proposicional.
  - **1.4.1** Método basado en tablas de verdad.
  - **1.4.2** Método de derivación paso a paso.
- **1.5** Prueba automática de teoremas.
  - **1.5.1** Razonamiento automático.
  - **1.5.2** Prueba automática de teoremas.
- **1.6** Cálculo de predicados.
  - **1.6.1** Predicados.
  - **1.6.2** Fórmulas de predicados.

## 2 Conjuntos, relaciones y pruebas matemáticas

**Objetivo:** El alumno usará el concepto de conjuntos, relaciones y pruebas matemáticas con un enfoque computacional.

#### **Contenido:**

- **2.1** Conjuntos.
  - **2.1.1** Elementos de conjuntos.
  - **2.1.2** Operaciones.
- **2.2** Relaciones y funciones.
  - **2.2.1** Notaciones.
  - **2.2.2** Características y aplicaciones.
- **2.3** Funciones de dispersión.
  - **2.3.1** Notación y operaciones.
  - **2.3.2** Aplicaciones.
- **2.4** Prueba por inducción matemática.
  - **2.4.1** Notaciones.
  - **2.4.2** Características y aplicaciones.
- **2.5** Técnica del casillero vacío y diagonalización.
  - **2.5.1** Características de la técnica.
  - **2.5.2** Aplicaciones.
- **2.6** Análisis combinatorio.
  - **2.6.1** Notaciones.

ESTRUCTURAS DISCRETAS (3/6)

- **2.6.2** Inducción y recursión.
- Permutaciones, ordenaciones, combinaciones y sus propiedades. 2.6.3
- 2.6.4 Características y aplicaciones.
- 2.6.5 Teoría de conteo.
- **2.6.6** Principio de Pigeonhole.
- **2.6.7** Funciones generadoras y relaciones de recurrencia.



### Sistemas algebraicos

Objetivo: El alumno comprenderá y aplicará la teoría de los sistemas algebraicos dentro del campo de la computación, haciendo énfasis en áreas tales como álgebra booleana, códigos de comunicaciones, circuitos de dos estados y aspectos específicos de la computadora.

#### **Contenido:**

- 3.1 Definiciones y conceptos de sistemas algebraicos.
  - **3.1.1** Definiciones y conceptos.
  - Tipos y características.
- 3.2 Semigrupos, monoides y grupos.
  - **3.2.1** Características y aplicaciones de los semigrupos.
  - Características y aplicaciones de los monoides. 3.2.2
  - 3.2.3 Características y aplicaciones de los grupos.
- La aritmética de residuos en las computadoras.
  - **3.3.1** Aritmética de residuos.
  - **3.3.2** Aplicaciones en las computadoras.
- Los códigos de grupo en las comunicaciones.
  - **3.4.1** Elementos de un sistema de comunicaciones.
  - **3.4.2** Códigos de grupo.
  - **3.4.3** Aplicaciones de los códigos de grupo.
- 3.5 Álgebra booleana.
  - 3.5.1 Características del álgebra booleana.
  - 3.5.2 Álgebra booleana en las computadoras.
- 3.6 Representación y minimización de funciones booleanas.
  - 3.6.1 Métodos de representación.
  - **3.6.2** Métodos de minimización.
  - **3.6.3** Aplicaciones en el diseño.
- Introducción a los circuitos de dos estados. 3.7
  - **3.7.1** Circuitos de dos estados.
  - **3.7.2** Diseño de circuitos de dos estados.

## Teoría de gráficas

Objetivo: El alumno representará y manipulará en la computadora diferentes tipos de gráficas, generando aplicaciones para la solución de problemas planteados.

## **Contenido:**

- Conceptos básicos y definiciones.
  - **4.1.1** Definiciones y conceptos.
  - Representaciones.



ESTRUCTURAS DISCRETAS (4/6)

- **4.2** Representación matricial.
  - **4.2.1** Conceptos básicos.
  - **4.2.2** Características y representaciones matriciales.
- **4.3** Manipulación de gráficas.
  - **4.3.1** Propiedades de las gráficas.
  - **4.3.2** Operaciones con gráficas.
- **4.4** Árboles.
  - **4.4.1** Definiciones y conceptos de árboles.
  - **4.4.2** Recorrido de árboles.
  - **4.4.3** Operaciones con árboles.
- **4.5** Detección de puntos muertos.
  - **4.5.1** Conceptos y definiciones.
  - **4.5.2** Características de los puntos muertos.
  - **4.5.3** Procesos para la detección de puntos muertos.
  - **4.5.4** Manejo de puntos muertos.
- **4.6** Detección de fallas en circuitos combinacionales.
  - **4.6.1** Circuitos combinacionales.
  - **4.6.2** Procesos para la detección de fallas en circuitos combinacionales.
- **4.7** Temas avanzados de teoría de gráficas.

### 5 Teoría de la computabilidad

**Objetivo:** El alumno comprenderá y aplicará la teoría de la computabilidad para determinar el estado computacional de funciones y problemas.

#### **Contenido:**

- **5.1** Elementos de la teoría de la computabilidad.
  - **5.1.1** Definiciones y conceptos.
  - **5.1.2** Computabilidad.
- **5.2** Funciones parciales.
  - **5.2.1** Conceptos básicos.
  - **5.2.2** Características y representaciones de las funciones parciales.
- **5.3** Funciones computables.
  - **5.3.1** Definiciones y conceptos.
  - **5.3.2** Características y representaciones de las funciones computables.
- **5.4** Funciones universales e intérpretes.
  - **5.4.1** Conceptos básicos.
  - **5.4.2** Características y representaciones de las funciones universales e intérpretes.
  - **5.4.3** Aplicaciones.
- **5.5** Especificaciones algorítmicas de programas.
  - **5.5.1** Algoritmia.
  - **5.5.2** Análisis y diseño algorítmico.
- **5.6** Complejidad.
  - **5.6.1** Complejidad y computabilidad.





Bibliografía básica: Temas para los que se recomienda:

GRASSMANN, Winfried K, TREMBLAY, J. P. Todos

Matemática discreta y lógica

Madrid, España

Prentice Hall, 2003

JOHNSONBAUGH, Richard Todos

Discrete Mathematics.

6th edition

London

Prentice Hall, 2004

KENNETH A. Berman, JEROME L. Paul 4, 5

Algorithms: Sequential, Parallel, and Distributed

U.S.A.

Thomson, 2004

KOLMAN, Bernard Todos

Discrete Mathematical Structures

5th edition

U.S.A.

Prentice Hall, 2003

LIU, C. L. Todos

Elementos de matemáticas discretas

México

McGraw-Hill, 1995

ROSEN, Kenneth H. Todos

Matemáticas discretas y sus aplicaciones

5a. edición

España

McGraw-Hill, 2004

TREMBLAY, Jean-Paul; MANOHAR, Ram

Todos

RANGEL GUTIÉRREZ, Raymundo Hugo (trad.)

Matemáticas discretas con aplicación a las ciencias de

la computación

México

**CECSA**, 2000

VEERARAJAN, T. Todos

Matemáticas discretas con teoría de gráficas y

combinatoria

México

McGraw-Hill Interamericana, 2008

(6/6)

ESTRUCTURAS DISCRETAS