Universidad Nacional Autónoma de México Facultad de Ingeniería

PROGRAMA DE ESTUDIO

Aprobado por el Consejo Técnico de la Facultad de Ingeniería en su sesión ordinaria del 2 de julio de 2008

IMPACTO AMBIENTAL Y MANEJO DE

	INITIO TANDENTIE I WANGEGO DE					
RESIDUOS MUNICIPALI	ES	1761	5°	09		
Asignatura		Clave	Semestre	Créditos		
Ingenierías Civil y Geomática Sanitaria y Ambienta		ntal	Ingeniería	Civil		
División	Departamento		Carrera(s) en que se imparte			
Asignatura:	Horas:		Total (horas):			
Obligatoria X	Teóricas 4.5		Semana 4.5			
Optativa	Prácticas 0.0		16 Semanas 72.0	0		

Modalidad: Curso

Seriación obligatoria antecedente: Química para Ingenieros Civiles

Seriación obligatoria consecuente: Ninguna

Objetivo(s) del curso:

En la primera parte del curso, el alumno organizará y dirigirá los grupos de trabajo multidisciplinarios integrados para identificar, predecir y evaluar los impactos ambientales significativos y potenciales de obras o actividades, así como para proponer las medidas de mitigación de los impactos adversos y comunicar los resultados. En la segunda parte del curso, el alumno aplicará principios de diversas ciencias para planear y diseñar funcionalmente sistemas de manejo de residuos sólidos municipales. Asimismo, distinguirá las actividades más relevantes de la operación y conservación de estos sistemas y determinará su impacto ambiental; aplicará métodos numéricos para la obtención de raíces de ecuaciones, solución de ecuaciones diferenciales e interpretación de polinomios.

Temario

Núm.	Nombre	HORAS
1.	Legislación nacional en materia de impacto ambiental	3.0
2.	Los proyectos de Ingeniería Civil	3.0
3.	Aplicaciones de las leyes de conservación de la masa y de la energía a la predicción de impactos	6.0
4.	Principios de ecosistemas	4.5
5.	Análisis del impacto en la calidad del agua	9.0
6.	Análisis del impacto en el factor suelo	3.0
7.	Análisis del impacto en la calidad del aire	6.0

IMPACTO AMBIENTAL Y MANEJO DE RESIDUOS MUNICIPALES

(2/9)

8.	Análisis del impacto en el nivel de ruido	
9.	Impacto en el medio socioeconómico	
10.	Métodos para estudiar y evaluar el impacto ambiental	4.5
11.	Definición y características físicas de los residuos municipales	3.0
12.	Almacenamiento, recolección y transporte de los residuos municipales	9.0
13.	Tratamiento y disposición final de residuos municipales	9.0
14.	Impacto ambiental de la disposición de residuos	6.0
		72.0
	Prácticas de laboratorio	0.0
	Total	72.0

1 Legislación nacional en materia de impacto ambiental

Objetivo: El alumno distinguirá y aplicará la legislación en materia de impacto ambiental.

Contenido:

- 1.1 Estructura de la legislación ambiental en México.
- **1.2** Ley general del equilibrio ecológico y la protección al ambiente.
- **1.3** Reglamento de la ley general del equilibrio ecológico y la protección al ambiente.
- **1.4** Leyes estatales en la materia.

2 Los proyectos de ingeniería civil

Objetivo: El alumno analizará el concepto de impacto ambiental y examinará las etapas de los proyectos de obras de ingeniería civil con el fin de distinguir cuál es la etapa más adecuada para efectuar los estudios correspondientes.

Contenido:

- **2.1** Definiciones de Ingeniería e Ingeniería Civil; el proyecto y sus etapas. Objetivos de la Planeación y descripción de etapas.
- 2.2 Los estudios de impacto ambiental como herramienta de la etapa de planeación del proyecto.
- **2.3** Evaluación de alternativas y de sus efectos.
- **2.4** Adopción de un plan.

3 Aplicaciones de las leyes de conservación de la masa y de la energía a la predicción de impactos

Objetivo: El alumno aplicará las leyes de conservación de la masa y de la energía para determinar los flujos de materia y energía hacia dentro y hacia fuera de un sistema, con el propósito de cuantificar contaminantes ambientales.

Contenido:

- **3.1** Definición del sistema y sus fronteras; diagramas de balances de materia.
- **3.2** Aplicaciones de la ley de conservación de la masa a sistemas con contaminantes conservativos y no conservativos.
- 3.3 Evaluación de la contaminación térmica de un río.

4 Principios de ecosistemas

Objetivo: El alumno aplicará los principios de ecología al análisis de los efectos típicos que las actividades humanas en general y las obras de ingeniería civil, en particular, tienen en los ecosistemas.

- **4.1** Características de los ecosistemas. Tramas alimenticias y estabilidad de población. Ciclos biogeoquímicos.
- **4.2** La naturaleza en México.

- **4.3** Acción humana y deterioro del ambiente natural: efectos de la agricultura, ganadería y crecimiento poblacional en los ecosistemas.
- **4.4** Agentes de cambio de las comunidades naturales: fuego, alteración de cuencas hidrológicas, deterioro de lagunas costeras, contaminación, introducción de especies, plagas.
- **4.5** Especies de plantas y animales en peligro: rareza de las especies, causas de extinción.
- **4.6** Leyes, reglamentos y normas oficiales mexicanas aplicables a la protección de los ecosistemas.

5 Análisis del impacto en la calidad del agua

Objetivo: El alumno aplicará modelos matemáticos para la predicción del impacto causado por el vertido de desechos en ríos, y juzgará los resultados de acuerdo con la normatividad y criterios ecológicos. Analizará el impacto causado por actividades antropogénicas en embalses naturales y artificiales. Aplicará modelos de simulación del impacto de la infiltración de sustancias contaminantes en los acuíferos. Finalmente, propondrá medidas de mitigación del impacto en la calidad del agua.

Contenido:

- **5.1** Contaminantes del agua. Normas oficiales mexicanas para el control de la contaminación.
- **5.2** Calidad del agua en ríos: demanda bioquímica de oxígeno; efecto de los desechos demandantes de oxígeno en los ríos; el modelo de Streeter–Phelps.
- **5.3** Calidad del agua en lagos y embalses: eutroficación, estratificación térmica.
- **5.4** Impacto ambiental de las presas.
- **5.5** Impacto en las aguas subterráneas: tipos de acuíferos, gradiente hidráulico, ley de Darcy, velocidad de flujo, dispersión y retardo; control de plumas contaminantes; redes de flujo y curvas de zonas de captura. Sobreexplotación de acuíferos: intrusión salina.
- **5.6** Medidas de mitigación del impacto en la calidad del agua.

6 Análisis del impacto en el factor suelo

Objetivo: El alumno distinguirá los efectos más importantes de la actividad humana en general y de las obras de ingeniería civil, en particular, sobre el factor suelo; asimismo, propondrá medidas de mitigación de los impactos adversos típicos.

- **6.1** Características generales de los suelos: concepto de suelo, procesos de formación, composición, propiedades físicas y químicas, sistemas de clasificación.
- **6.2** Degradación de los suelos: principales procesos erosivos, desertificación, contaminación de suelos.
- **6.3** Normas oficiales mexicanas aplicables al factor suelo.
- **6.4** Medidas de mitigación del impacto en el factor suelo: manejo de suelos.

7 Análisis del impacto en la calidad del aire

Objetivo: El alumno distinguirá las fuentes y efectos de los principales contaminantes atmosféricos y aplicará modelos matemáticos para la predicción de impactos causados por distintas fuentes. Finalmente, propondrá las medidas de mitigación correspondientes.

Contenido:

- **7.1** Principales contaminantes atmosféricos, fuentes de emisión, efectos en los seres vivos y en los materiales. Normas oficiales mexicanas en materia de calidad del aire.
- 7.2 Contaminación del aire y meteorología.
- **7.3** Dispersión atmosférica; aplicaciones del modelo gaussiano a la predicción de impactos de fuentes puntuales. Aplicación de un modelo para fuentes de línea. Modelos para fuentes de área.
- **7.4** Medidas de mitigación del impacto en la calidad del aire: control de emisiones.

8 Análisis del impacto en el nivel de ruido

Objetivo: El alumno distinguirá los efectos más importantes de las obras de ingeniería civil en el nivel de ruido; además, medirá el nivel de presión acústica y aplicará los principios de la física para la predicción del impacto en el nivel de ruido. Finalmente propondrá las medidas de mitigación correspondientes.

Contenido:

- **8.1** Sonido y ruido: propiedades del sonido, magnitud e intensidad. Niveles de sonido y medición. Características del ruido.
- **8.2** Efectos del ruido en la salud humana: mecanismos de la audición, intervalos de frecuencia y sensitividad, audiometría, enfermedades y malestares del oído.
- **8.3** Fuentes de emisión de ruido: maquinaria de construcción, vehículos automotores, aeronaves.
- **8.4** Predicción del ruido generado en la etapa de construcción de un proyecto.
- **8.5** Predicción del ruido generado por automotores en proyectos de vialidades.
- **8.6** Predicción del ruido generado en los proyectos de aeropuertos.
- **8.7** Medidas de mitigación del impacto en el nivel de ruido. Barreras acústicas temporales y permanentes.

9 Impacto en el medio socioeconómico

Objetivo: El alumno comprenderá y explicará la importancia de los aspectos que constituyen el factor desde el punto de vista del impacto ambiental y distinguirá los aspectos que pueden ser afectados por un determinado proyecto. Asimismo, distinguirá los aspectos humanos que pueden condicionar o acelerar las acciones de un proyecto determinado.

- **9.1** Principales aspectos del factor humano: demografía, actividades productivas, estructura agraria, financiamiento y comercialización, ingreso y empleo, orden jurídico-político, infraestructura y servicios, antropología e historia y estética.
- 9.2 Algunas técnicas de investigación: trabajo de gabinete y trabajo de campo.
- 9.3 Problemas en la predicción del impacto en el factor humano.
- **9.4** Medidas de mitigación.

10 Métodos para estudiar y evaluar el impacto ambiental

Objetivo: El alumno distinguirá los principales métodos para estudiar el impacto ambiental, con énfasis en los métodos más adecuados para las condiciones nacionales.

Contenido:

- 10.1 Metodología general para evaluar el impacto ambiental.
- **10.2** Métodos para estudiar el impacto ambiental y su clasificación.
- 10.3 Explicación de los métodos más adecuados a las condiciones nacionales.
- **10.4** Aplicación de los métodos a casos estudio.

11 Definición y características físicas de los residuos municipales

Objetivo: El alumno diferenciará los tipos de residuos, clasificará las fuentes de generación, distinguirá sus propiedades físicas y explicará el flujo de residuos en la sociedad. Asimismo, distinguirá los conceptos de: reducción, reuso y recuperación.

Contenido:

- 11.1 Tipos de residuos y fuentes de generación.
- **11.2** Leyes y reglamentos en materia de residuos.
- **11.3** Composición física. Normas oficiales mexicanas para la determinación de las características físicas.
- 11.4 Flujo de materiales en la sociedad.
- **11.5** Reducción, reuso y recuperación.

12 Almacenamiento, recolección y transporte de los residuos municipales

Objetivo: El alumno describirá los elementos funcionales de un sistema de manejo de residuos. Asimismo, diseñará de manera preliminar los subsistemas de almacenamiento en sitio, recolección y transporte.

- **12.1** Elementos funcionales del sistema de manejo de residuos e interrelaciones.
- **12.2** Generación de residuos: normas oficiales mexicanas para la determinación de la generación per cápita; estudios de generación. Factores que afectan las tasas de generación.
- 12.3 Manejo en el sitio, almacenamiento y procesamiento.
- **12.4** Recolección de residuos municipales: servicios municipales de recolección, tipos de sistemas, determinación del tipo de vehículo y requerimientos de personal operativo.
- 12.5 Diseño de rutas de recolección.
- 12.6 Transferencia y transporte.

13 Tratamiento y disposición final de residuos municipales

Objetivo: El alumno diferenciará los sistemas de tratamiento de residuos municipales; además, diseñará funcionalmente y de manera preliminar el relleno sanitario que se adapte al sitio seleccionado y de acuerdo con las normas oficiales mexicanas.

Contenido:

- 13.1 Clasificación de los sistemas de tratamiento. Situación actual y tendencias mundiales.
- 13.2 Rellenos sanitarios. Métodos de construcción y operación; selección del sitio y estudios básicos.
- 13.3 Ingeniería básica del proyecto de un relleno sanitario; diseño funcional.
- **13.4** Operación y control de un relleno sanitario.
- 13.5 Uso final del relleno.

14 Impacto ambiental de la disposición de residuos

Objetivo: El alumno explicará algunos de los impactos más importantes de la disposición de los residuos en el ambiente.

Contenido:

- 14.1 El carácter del problema de los residuos.
- **14.2** Impacto de la disposición final de los residuos.
- 14.3 Medidas de mitigación del impacto de la disposición final de residuos.

Bibliografía básica:

Temas para los que se recomienda:

VÁZQUEZ GONZÁLEZ Alba B. y CÉSAR VALDEZ Enrique Todos

"Impacto Ambiental"

Instituto Mexicano de Tecnología del Agua.

Facultad de Ingeniería UNAM 1994

JAIME, Alberto

"Las obras de ingeniería civil y su impacto ambiental" 1,2,9 y10

Series del Instituto de Ingeniería,

UNAM. .Publicación SD42,

2003

CANTER Larry W. 4 a 11

"Environmental Health Impact Assessment"

Pan American Center for Human Ecology and Health.

1986

VÁZQUEZ YANES Carlos y OROZCO SEGOVIA Alma . 4, 5 y 6

"La destrucción de la naturaleza"

Fondo de Cultura Económica.

1995

IMPACTO AMBIENTAL Y MANEJO DE RESIDUOS MUNICIPALES	(8/9)
ESTRADA Alejandro y COATES-ESTRADA Rosamond. "Las selvas tropicales húmedas de México". Fondo de Cultura Económica. 1995	4
PEAVY Howard S. et al "Environmental Engineering" Segunda edición McGraw-Hill internacional	Todos
LÓPEZ RUIZ, Rafael "Ingeniería Sanitaria Aplicada al Control, Aprovechamiento y Disposición Final de los Residuos Sólidos Municipales" Facultad de Ingeniería, UNAM México, 2002	11, 12 y 13
Bibliografía Complementaria: TURK-TURK y WITTES-WITTES "Tratado de ecología" Edit. Interamericana México. 1981	4
HENRY Glynn y HEINKE Gary W. "Ingeniería Ambiental" Prentice 1999	Todos
MIHELCIC Larry W. "Manual de evaluación de impacto ambiental" McGraw-Hill 1999	11
DAVIS Mackenzie L. y CORNWELL David A. "Introduction to environmental engineering" McGraw-Hill.1991	5 a 9
NATHANSON Jerry A. "Basic environmental technology" Prentice Hall. 1997	Todos
LUTHE, Olivera y Schutz, Métodos Numéricos México Limusa, 1981	5, 6, 7 y 8

Sugerencias didácticas:

Exposición oral Exposición audiovisual Ejercicios dentro de clase Ejercicios fuera del aula Seminarios

X X X Lecturas obligatorias Trabajos de investigación Prácticas de taller o laboratorio Prácticas de campo

X X X

Otras:

Organizar un concurso para licitación de un estudio de impacto ambiental en el que participen los alumnos en equipos, como empresas

de consultoría.

Forma de evaluar:

Exámenes parciales Exámenes finales

Trabajos y tareas fuera del aula

X

Participación en clase Asistencias a prácticas

tras:

Prácticas de laboratorio como

requisito.

Perfil profesiográfico de quienes pueden impartir la asignatura

Formación académica: Licenciatura en Ingeniería Civil o Física, preferentemente con

maestría en Ingeniería Ambiental.

Experiencia profesional: En estudios ambientales y de residuos municipales.

Especialidad: Impacto y riesgo ambiental.

Conocimientos específicos: Identificación, predicción y evaluación de impactos ambientales

generados por obras y actividades de proyectos de desarrollo y estudios de generación, recolección, almacenamiento y disposición

final de residuos sólidos municipales.

Aptitudes y actitudes: Esté actualizado en los métodos y las técnicas de experimentación

de la ingeniería sanitaria y ambiental. Exponga con claridad sus conocimientos.

Identifique, plantee e implante soluciones a problemas de la

ingeniería sanitaria y ambiental.

Prevea y explique la trascendencia social y científico-tecnológica de

la ingeniería sanitaria y ambiental.

Transmita al alumno una actitud consciente y responsable con relación a las condiciones y los problemas nacionales ambientales.

Maneje de manera crítica la información científica y tecnológica de

fuentes especializadas de actualidad.

Debe poseer características y actitudes adecuadas para inspirar confianza, facilitar la comunicación y transmitir entusiasmo en los

estudiantes, con sentido positivo y tolerancia.